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e Abstract
s
This considers an optimisation strategy for solving for the weight values of a
general adaptive feed-forward layered network with linear output units. The weight
values of the final layer of the network are determined using linear techniques based
on a singular value decomposition of the outputs of the hidden units. The set of
weight values governing the transformation of the data prior to this final layer is
found using a nonlinear optimisation strategy. This memorandum considers various
nonlinear optimisation strategies combined with the linear method and compares
the performance of this hybrid approach with previous workgﬁ-} which solves for all

the weights of the network using nonlinear techniques on a range of problems. ~ < :
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1 Introduction.

Adaptive feed-forward networks are a particular example of a wider class of neural networks,
which are networks of computing structures operating in parallel whose configurations are
motivated by biological systems. Specifically, a network is an inhomogeneous assembly of
simple computational elements connected by links with variable weights. The networks
perform a pattern classification through a nonlinear, noninvertible mapping from pattern
space to class space. The precise form of this transformation is determined by the config-
uration of the network and the values of the weights between individual elements in the
network. The configuration of the network is often influenced by & priori knowledge of the
pattern classification problem that the network is required to perform. Once this structure
has been specified, the values of the parameters of the network, the weights and biases, are
found through a training procedure conditional upon a set of training patterns. Ideally,
the network will capture the structure of the training data, thus giving it some ability to
generalise to previously unseen patterns.

The training procedure usually requires the minimisation of an expression for the error
at the output of the network. Traditionally, this minimisation has been implemented us-
ing ‘error back propagation’ (the chain rule) to evaluate the derivatives of the error with
respect to the network parameters, together with a modified steepest descent method to
use the gradient information to find a local minimum of the error function [5]. Other more
efficient strategies for minimising a nonlinear function have been considered for adaptive
feed—forward networks. These methods have been applied to examples ranging from smali-
scale trivial problems (solution of the XOR function) to a larger scale pattern processing
problem (speech recognition of isolated confusable words) |7].

The aim of this paper is to present a combined linear and nonlinear technique for
solving for the set of weights of the network. This technique takes explicit note of the fact
that, providing the output transfer functions are linear (or more generally, that the output
nonlinearity is invertible) then, given the weights between the input layer and the hidden
layer, the weights between the hidden layer and the output layer may be chosen, using linear
techniques, to find a global minimum of the error function with respect to these weights.
The first layer weights may be found using the techniques described in our previous report

7).

The condition that the final layer units have linear transfer functions is not so restrictive
as may first appear. It has been shown [6] that minimising the mean-square error at the
output of such a network is equivalent to performing a nonfinear discriminant analysis which
maximises a norm relating the inverse of the total covariance matrix and the weighted
between class covariance matrix of the hidden unit patterns. Therefore, in problems where
the maximisation of such a norm is applicable, the addition of a final layer with linear
output units and sum-square error minimisation enabler this to be achieved.

The outline of this paper is as follows. We begin by describing the standard feed-forward
adaptive network and the procedure for training and testing such a network. The following
section considers the special case where the output transfer function of the network (see
Section 2) is linear, which enables linear techniques to be used to solve for the finai-layer
weights. We combine the linear techniques of Section 3 and nonlinear optimisation methods
in Section 4 to present a strategy for solving for the weights of a network. This hybrid linear-
nonlinear strategy is applied to a range of problems in Section 5 and the results compared

"
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Input layer Hidden layer Output layer

Figure 1: A schematic diagram of the standard feed forward adaptive layered network
geometry considered in this paper.

with the standard nonlinear optimisation approach.

2 The Standard Feed-forward Adaptive Network.

2.1 Description of the Network.

The structure of the standard layered network model considered in this paper is depicted in
Figure 1. It is envisaged that input data may be represented by an arbitrary (real valued) n-
dimensional vector, |z)?, or an ordered sequence of n real valued numbers, {z;; i = 1,...,n}.
Thus there are r independent input nodes to the network which accept each input date
vector. Each input node is totally connected to a set of ng ‘hidden’ nodes (hidden from
direct interaction with the environment). Associated with each link between the t-th input
node and the j-th hidden node is a scalar u;;. Usually, the fan-in to a hidden node takes
the form of a hyperplane: the input to node j is of the form 8, = T, z;ui; = (z|u;) where

!This paper employs the bra-ket notation for vectors. A column vector (z;,23,...) is written as |z) (the
‘ket’). The corresponding row vector is denoted (z| (the ‘bra’ vector). A scalar product between |z) and
(y] I given by (y(z) and |y){z( is a linear operator with matrix elements A,; = y,z2;.
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page 4 Andrew Webb & David Lowe

{15} is the vector of n scalar values associated with hidden node j. The réle of each hidden
node is to accept the value provided by the fan-in and output a value obtained by passing
it through a (generally, though not necessarily) nonlinear transfer function,

#; = #(uo; + 8;) = b;(uo; + (zin;)) (1)
where p0; is a local ‘bias’ associated with each hidden node.

The hidden layer is fully connected to a set of n' output nodes corresponding to the
components of an n’ dimensional output space. The strength of the connection from the
j-th hidden node to the k-th output node is denoted A;; and thus the value received at
the k~th output node is a weighted sum of the output values from all of the hidden nodes,
L = 252y Aind;.

In general the output from the k-th output node will be a nonlinear function of its
input, Op = ®x(Aox + (Ae[@)) where Ao is & ‘bias’ associated with that output node.

For a Radial Basis Function network {1] the fan-in to a hidden node takes the form
of a hypersphere; 8; = 37, (z; — pi;)? without a bias link (zo; = 0 ¥ 5) and the output
from the output nodes are linear functions of the input ($,(z) = z V k). Apart from these
superficial differences, we view the essential role of these networks to be equivalent in spite
of the interpretational distinctions.

Thus the networks provide a transformation mapping from an n~dimensional input
space to an n'-dimensional output space via an intermediate characterisation space. This
mapping is totally defined by the topology of the network (in particular, how many hidden
units are employed) once all the nonlinear transfer functions are specified and the set of
weights and biases {A, z} have been determined. This set of weights and biases is found by
a ‘training’ procedure.

Networks performing a transformation from an n-dimensional input space to an n'-
dimensional output space using more than one intermediate hidden layer have been consid-
ered by some workers (4], but we shall restrict our attention in this paper to networks with
s single hidden layer.

2.2 Training the Network.

The network will operate once a set of weight values {14, sy} has been determined. This
set is conditional upon training data presented in the form of representative input and
corresponding target output patterns.

The set of parameters {A;i, pi;} is chosen so that the aciual outputs of the network,
{lOP),p = 1,2,... P}, for a given set of inputs, {|I?),p = 1,2,...P}, are ‘close’ in some
sense to the desired target values, {|T?),p = 1,2,...P}. Usually, this error criterion is a
sum-—of-squares error of the form

P
E=3 11T - 107 | (2)

p=1
where the summation runs over all the patterns in the training set. This is the error
measure we shall adopt in this paper. Using the Euclidean distance function and expressing

-4
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Hybrid Optimisation for Layered Networks page 5

the outputs in terms of the set of weights and biases and the inputs, the error may be
written explicitly as a function of the set {)ji, mij}. For instance, in the case of the
standard multi-layer perceptron, this error may be expressed as

P n "o " 3
E=} ) {Tf - 4 (dor + Y #iluos + 3 PuslAi) } 3)

p=1k=1 =1 =1

If the transformation mapping was a Radial Basis Function network, the explicit error
expression would be

P n no n 3
E=33 {T: = (hor + 3 &[0 - ws)*i) } (1)

pP=lk=1 Jj=1 =1

-~

However, in what follows we will restrict our attention to the multi—layer perceptron.

The expression for the error is a differentiable nonlinear function of the parameters and
the training procedure is to find a minimum of this function. Therefore, some strategy for
nonlinear function minimisation must be employed. Of course, a global minimum cannot
be guaranteed. Nevertheless, it may be possible to obtain a good local minimum. Also, not
only do we require a good solution, but it must be obtained ‘within a reasonable timescale’.
Schemes which find a good solution a small percentage of the time, but are very fast, may
be preferable to one which finds a good solution on most occasions, but takes a long time
to do so.

Optimisation strategies for nonlinear functions were discussed in a previous paper [7].
These were applied to the training of adaptive feed—forward networks and various example
problems considered. The optimisation strategies considered in some detail were two ex-
amples of a conjugate gradient method (the Fletcher~Reeves (F~R) and the Polak-Ribiere
(P-R) variants); two examples of the Broyden class of quasi~-Newton methods (the Davidon-
Fletcher-Powell (DFP) and the Broyden—Fletcher-Goldfarb-Shanno {BFGS) methods);
and a nonlinear sum-of-squares minimisation technique (the Levenberg-Marquardt (LM)
method). Further variants of the methods arose from the type of line search employed
to find the minimum of the nonlinear function in a given search direction. Two types of
line search were used; an approximate line search based on inverse parabolic interpolation
and an accurate line search which performed inverse parabolic interpolation iteratively and
resulted in less iterations per solution, but more function evaluations. The performance of
these methods was compared with that of the steepest descent method traditionally used
for training an adaptive feed-forward network.

The results of the study showed that the most suitable optimisation strategy depended
on the size of the network under consideration. For small-scale problems (typically less
than 30 adjustable parameters), the Levenberg-Marquardt method gave the best results.
For medium-scale problems (between 40 and 250 adjustable parameters}, the quasi-Newton
methods (BFGS and DFP) offered the greatest efficiency. For large-scale problems (with
the number of parameters, N, much greater than 250) the conjugate gradient method
was adopted since we were unable to apply the Levenberg-Marquardt or quasi-Newton
methods owing to the requirement to store an srray of size N x N. Steepest descents was
not recommended for any real problem due to its inefficiency.

A further result was that there is little advantage to be gained by using an accurate line
minimisation procedure. An accurate line search increased the CPU time by about a factor

-5
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page 6 Andrew Webb & David Lowe

of three for the problems addressed without a significant improvement in classification
performance. As a result of the study, the optimisation strategies we shall consider in
Section 5 are conjugate gradients {P-R and F-R), the quasi-Newton methods (BFGS and
DFP) and the Levenberg-Marquardt method, all using an approximate line search.

2.3 Testing the Network.

Testing the network consists of applying the trained network to patterns not previously
used as part of the training set and comparing the outputs with the labels corresponding to
those patterns. It is not sufficient to consider how closely the network models the training
set since, if it models the training set too well, the network may not have captured the
underlying structure of the data and be unable to generalise to unseen data.

The data employed for testing the network consists of a set of P! input-output presen-
tations {|I7},|TP),p = 1,2,...P'}. For the set of input test patterns, {|7%)}, the outputs
produced by the trained network, {{O7)}, are compared with the desired outputs, {|T")}
using a sum-squared-crror measure. We use the normalised error presented in our previous

paper (7], £
TR - 169 (1
E = 4 ~ o, =
\{Ef’:, I AT —1T) |12 (5)

where |T) is the mean target pattern over all the test patterns. For a normalised error
of unity, one can infer that the network is predicting the output in the mean and a value
of zero means that it is predicting perfectly. In the results of Section 5, the ability of the
chosen networks to generalise to unseen data is indicated by the normalised error, averaged
over each set of experiments.

3 Linear Output Units.

In this section, we consider the special case where the output nonlinearity is described by
®(z) = z, that is, the transfer function on each output unit is linear. Of course, there may
be situations where it is desirable for the output transfer function to have the logistic form
®(z) = 1/(1 + exp(-z)), particularly where knowledge of the output space suggests that
values between O and 1 are appropriate. On the other hand, having linear output units
enables the weights between the hidden layer and the output layer, {1}, to be calculated
explicitly in terms of the weights between the input layer and hidden layer, {}, as follows.

The error between the kth output of the network and the kth target value (for the pth
pattern presented at the input), Ef, may be written as

E} = O, -T}. (6)
Expressing the output, Of, as a function of the weights, {35, A}, the nonlinearities, ¢;, and
the inputs, I7, gives
Ny n
E} = Xoe+ Y #iluoj + 3 Iuilhje ~ T (7

i=1 =1

-6-
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In matrix notation, Equation (7) becomes
E=AH-T (8)

where E and T are n' x P matrices, (E),, = E} and (T);, = T7; A is 8 n' x (no + 1) matrix
of weights and biases,

(A)ji = Ay 1 =1,..,n,
= l\o" i = no + 1, (9)
and H is a (no + 1) x P matrix of the outputs of the hidden units
=1 J=no+1L

The solution of Equation (8) for A which minimises ||E||, the Euclidean norm of the matrix
E, and which has the smallest ||A}| may be written as

A = THY, (11)

where H* is the pseudo-inverse of H of size P x (ng + 1) (see Appendix A). For a matrix
H of rank ng + 1, the pseudo-inverse is given by

H* = H'(HH')"! (12)

where H* denotes the transpose of matrix H. The condition on the rank of the matrix H
implies that the number of independent patterns, P, is greater than no + 1. In a linear
problem, this corresponds to an overdetermined problem which does not have a unique
solution generally. Substituting for H* from Equation (12} into Equation (11) gives the
solution for the weight matrix, A, as

A = TH'(HH')! (13)

Thus, given the set of weights between the input layer and the hidden layer, {u}, Equa-
tion (11) gives the solution for the final layer weights which minimises the output error.
There are two immediate consequences of this approach. Firstly, for a given set {u}, the
solution for A gives a global minimum of the error as a function of the weights {A}. This
means that it is not necessary to search the space of final layer weights since Equation
(11) provides a scheme for obtaining these weights from the first layer weights. Secondly,
expressing the fina! layer weights {A} as a function of the first layer weights {1} reduces the
number of independent variables of the error function. For some network configurations,
this may be a significant reduction, though it must be recognised that any savings due to
fewer independent variables may be offset by the need to calculate a pseudo-inverse.

It is worth considering the significance of this approach in a little more detail. The
error at the output of the network, E, is equivalent to the trace of the matrix, EE*. Using
Equation (8) for E and the minimum norm solution for A (Equation (11)) gives

E = Tr(EE') = Tr(TT - TH'(HH')*HT") (14)

Thus, for a fixed set of target vectors, minimising the sum-square error, E, is identical to
maximising the cost function, C, given by

C = Tr(TH'S*HT"), (15)

-7-
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page 8 Andrew Webb & David Lowe

where 8 = HH" is the (no + 1) x (no + 1) covariance matrix at the output of the hidden
units.

The interpretation of the cost function, C, for different output coding schemes in terms of
the total covariance matrix and the between class covariance matrix of hidden unit outputs
is given in reference {6]. However, we shall note here that for a one—out—of-n' output coding,
and if the matrix 8 is full rank, then minimising the sum-square error at the output of the
network is equivalent to maximising a cost function, C, given by

C = Tr(SpS7Y), (16)

the trace of the product of the weighted between—class covariance matrix Sg and the inverse
of the total covariance matrix at the outputs of the final hidden layer. If there are n' classes,
Cr, ke = 1,..,n' with n, patterns in class C;, then for this particular coding scheme the
matrix Sg is given by

S5 = Y_n}(imf!) - |m"))((mfl| - (m¥)) (17
k=1

where [m}} is the mean output vector over all patterns in class C; (at the hidden unit
outputs)

mf) = L 3 1) (18)

kervec,

and |m#) is the mean output vector over all patterns at the hidden unit outputs

H 1 &
mf) = =3 1#7). (19)
p=1

Equation (16) justifies the use of linear output units and the minimisation of the sum-
square—error since the process implicitly maximises the cost function (16) which is attempt-
ing to separate the pattern into classes in an optimal way. This is the correct strategy for
discrimination tasks.

In the following section we shall present a strategy for finding the weights of an adaptive
feed-forward network using a combination of linear and nonlinear optimisation techniques.

4 Combined Linear and Nonlinear Optimisation.

In Section 2 we described a standard feed-forward adaptive network and presented a scheme
for ‘training’ the network. Traditionally, all the parameters of the network have been
determined by minimising the output error as a function of the parameters using a steepest
descent, or accelerated steepest descent strategy. In our previous work (7], more efficient
nonlinear function optimisation routines were assessed and applied to error minimisation
at the output of a feed—forward network on a range of problems. The previous section
described how, for the special case of linear output units, the final layer weights may be
chosen optimally, using linear techniques, as a function of the first layer weights. We shall
now consider combining the linear and nonlinear optimisation strategies.

-8-
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Hybrid Optimisation for Layered Networks page 9

4.1 Training the Network.

Again, the set of parameters, {1, }, is chosen to minimise the sum-of-squares error, E,
which may be written (for linear output units) as

P n' no n ?
E=3 3 {Tf-*0t+z¢:(#0i+zfi’m:l'\jt} : (20)
p=1k=1 =1 =1

We now regard E as a nonlinear function of the first layer weights {u} only and a nonlinear
function optimisation strategy is employed to find these weights. The second layer weights,
{1}, are regarded as a function of the first layer weights and are chosen using Equation
{(11). Thus, each time the nonlinear strategy updates the first layer weights (for example,
when performing a line search along a chosen search direction) the second layer weights are
also updated. This search strategy may be considered as proceeding on two timescales. A
long timescale over which the set of weights {41} is adjusted in order to minimise the error,
and a very short timescale in which the set of weights {1} is changed to minimise the error
as a function of these weights alone.

Exploiting the linearity of the transfer function at the outputs in the way described offers
a number of potential advantages in the training of a network. The number of independent
weights in the network is reduced. Therefore, it might be expected that the time taken for
the nonlinear function optimisation scheme to find a minimum of the error will be reduced.
The network is always in a state where the error is at a global minimum in the space of final
layer weights. This may help the network to reach a minimum more rapidly and to reach
a shallow local minimum less often. However, any reduction in the number of iterations to
find a minimum may be offset by the extra computation involved in evaluating the singular
value decomposition, particularly if the number of final layer weights is large.

In the following section we consider applying a selection of nonlinear optimisation strate-
gies to several problems ranging from the small-scale XOR problem to a large-scale speech
recognition experiment.

4.2 Testing the Network.

The testing of the network is independent of the method used to obtain the weight values.
Patterns not previously used as part of the training set are presented to the network and
the outputs compared with the targets corresponding to those patterns (see Section 2.3). A
measure of the performance of the network is the normalised error (Equation (5)). Evaluated
on the training data, it indicates how well that data is modelled by the network. Evaluated
on the test data, it shows how well the network has captured the underlying structure of
data and is a measure of the ability of the network to generalise.

For classification problems (for example, the ‘EE’ set example considered in the next
section), a further measure of performance is the classification accuracy. For a one-from-n'
output coding scheme, pattierns are assigned to class C; if the actual output vector is closest
to the desired target pattern for that class. It does not necessarily follow that the smaller
the normalised error, the better the classification accuracy, as the results of Section 5 show.

The linear analysis suggests a further measure of classification accuracy. Since min-
imising the mean-square—error implies that a particular cost function, evaluated on the

-9




page 10 Andrew Webb & David Lowe

hidden unit outputs, is maximised, then classification may be performed at the output of
the hidden units by assuming a model for the distribution of patterns. This may be achieved
by assuming a multivariate Gaussian distribution for the outputs of the hidden units for
each class, with the means and coveriance matrices of the distributions taken to be the
sample class means and covariance matrices at the outputs of the hidden units. These may
be calculated using the set of input patterns and the solution for the network weights. A
previously unseen pattern msy be classified by presenting it to the network, calculating
the output of the hidden units and assigning it to a particular claas using the probability
density functions on a maximum likelihood basis. This strategy will not be followed in this
study, but its importance is noted.

In the following section, the normalised error will be used as a measure of performance
and, where appropriate, the number of patterns classified correctly based on the smallest
Euclidean distance in the output space.

5 Applications and Results.

In Section 3 a linear method for evaluating the weights of the final layer of an adaptive
feed-forward layered network (under certain reasonable assumptions) was described. In
Section 4, it was shown how a network may be trained using a combination of linear and
nonlinear optimisation strategies. Here, this hybrid approach is applied to the five problems
addressed in our previous work {6].

The network considered is a conventional multi-layer perceptron with one hidden layer
whose units have logistic transfer functions and a linear output layer. The nonlinear opti-
misation strategies employed are two variants of the conjugate gradients method (Polak-
Ribiere and Fletcher-Reeves); two quasi~Newton methods (the Broyden-Fletcher-Goldfarb-
Shanno and Davidon-Fletcher-Powell methods) and the Levenberg-Marquardt method.
The method of steepest descents was not used since in our experience it generally takes an
order of magnitude longer to converge to a solution than the optimisation strategies listed
above. An approximate line search was used in all the methods and to test for convergence,
a fractional tolerance, ftol, was employed. Iteration will stop if

20x |S - S,] < ftol x ([S|+|Sp| + ¢€) (21)

where S is the current function value; S, is the value on the previous iteration and ¢ is a
small positive constant (taken to be 10-1°). The value of the fractional tolerance used in
the convergence criterion was taken to be 10~ unless otherwise stated. The singular value
decomposition routine used to implement the linear part of the hybrid optimisation strategy
is based on a Householder reduction to bi-diagonal form followed by diagonalisation of the
bi~diagonal form using Givens rotations [3).

The tables of results are in the same format as those in our previous work {7]. For
each problem a solution is sought for a number of different initial random configurations
for the weights of the network. These are chosen from a uniforn distribution on (-1,1).
The tables give the number of correct solutions (where ‘correct’ will be defined for each
problem separately); the mean number of iterations of the algorithm (which is equal to
the number of gradient evaluations of the mean-square error); the mean normalised error
(evaluated on the test set if one is used, otherwise the training set); the mean number of

.10-
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function evaluations (calculations of the mean-square error); and the mean CPU time in
seconds (all experiments were run on a microvax Il running FORTRAN under VAX/VMS).
The mean CPU time can be taken only as a rough guide to the performance, since the
algorithms have not been optimised. In the tables ‘LIN' refers to the hybrid approach
employing a linear strategy to solve for the weights between the hidden layer and final
layer. ‘STD’ refers to the standard approach in which all weights are solved for using a
nonlinear optimisation routine (but still with a final layer with linear transfer functions).

5.1 The XOR function.

The XOR function is a small-scale problem consisting of only four input patterns, namely
the binary sequences 00, 01, 10, 11, and the target for the patterns is a ‘1’ if the number of
‘I’s in the input is odd and ‘0’ otherwise. The XOR experiment consisted of presenting the
four input patterns, together with the corresponding desired target patterns to a network
with two input units, two logistically nonlinear hidden units and one linear output unit. *
For an initial random weight configuration, the chosen search strategy is employed to find
the minimum of the output error. This is repeated for 1000 different sets of random start
positions. Results are summarised in Table 1, and (as in (7]) a ‘correct’ solution was assumed
if the normalised error on the training data was less than 0.05.

In the fully nonlinear approach, there are 9 parameters to be adjusted by the nonlinear
optimisation routine. In the hybrid approach, there are 6, since the two weights and the
bias between the hidden layer and the final layer are found using linear techniques.

From Table 1 we may conclude that

1. Using linear techniques to solve for the final layer weights results in an increase in
performance for the quasi-Newton methods and a marginal decrease in the perfor-
mauce of conjugate gradient methods. The performance of the Levenberg-Marquardt
method is substantially reduced from that obtained by the fully nonlinear method
with only 76% correct compared with 94% for the standard approach. However,
Levenberg-Marquardt still gives the best performance overall.

2. For all methods the number of function calls and gradient calls is significantly reduced.
For the Levenberg-Marquardt method, this reduction is by a factor of two but is
between four and seven for the other methods.

3. The mean normalised error is reduced for all methods except the Levenberg-Marquardt
method.

4. Despite the great reduction in the number of function and gradient calls achieved by
the hybrid approach, the mean CPU time is essentially unaltered. This is because
of the additional requirement to calculate a pseudo-inverse each time the function is
evaluated.

5.2 Markov Source Discriminator.

The Markov source discriminator is an intermediate problem between the small-scale dis-

continuous problems and large, continuous, stochastic problems. It is a generalisation of
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% Number of | Mean Number of | Mean CPU

Correct | iterations | Error, £ | function calls | (seconds)
LIN & C.G. (P-R) 665 57| 0.2418 37 048
LIN & CG. (F-R) 65.7 5.7 0.2459 39 0.50
LIN & ¢-N (BFGS) 70.1 6.2 0.2187 45 0.59
LIN & g-N (DFP) 70.6 64| 0.2080 46 0.61

} LIN & L-M 76.0 5.8 0.1722 31 0.52

STD & C.G. (P-R) 67.4 40 0.2802 239 0.75
STD & C.G. (F-R) 67.5 43 0.2835 241 0.78
STD & q-N (BFGS) 62.8 26| 0.2028 155 0.59
STD & q-N (DFP) 473 56 | 0.4157 301 1.36
STD & L-M 94.0 10 0.0432 54 0.46
C.G = conjugate gradients, g-N = quasi-Newton, L-M = Levenberg-Marquardt

P-R and P-R refer to the Polak-Ribiere and Fletcher-Reeves implementations
of the conjugate gradient method.

DPF and BFGS refer to the Davidon-Fletcher-Powell and
Broyden-Fletcher~Golfarb-Shanno quasi-Newton methods

LIN and STD refer to the method for solving for the weights

(using linear techniques or the standard approach)

Table 1: Results Table illustrating the performance of various search strategies on the XOR
function problem using a 2-2-1 standard layered network with linear output units.
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the XOR function described above. Each input pattern is a short binary first—order Markov
chain; i.e. a sequence of zeros and ones in which the probability of a one in any position
depends on the symbol at the previous position. Such a pattern is generated by a sym-
metric Markov source. A symmetric Markov source is completely specified by a transition
probability, p, of any bit being different from the previous bit.

Results are presented for six-bit patterns generated by two equally~likely Markov sources
with transition probabilities of p = 0.7 and p = 0.3 (the classic exclusive—OR problem
considered in the previous section is the limiting case of two-bit patterns and transition
probabilities of 0.0 and 1.0).

Training consisted of presenting the 64 (2¢) distinct six-bit input patterns to the network
together with the associated targets for a given set of initial random start weights. The
target for each pattern was the probability that the pattern was generated by a binary
first-order Markov source with transition p = 0.7 (see [7}) and the network considered was
6 — no — 1 where we chose ng = 6. The procedure was repeated for one hundred sets of start
weights and performed for each search strategy. The criterion that the solution obtained
was ‘correct’ was taken to be when the normalised error at the convergence of the algorithm
was below 0.25. For this experiment, the fractional tolerance used to test for convergence
was set to 1074,

The number of independent parameters in the fully nonlinear approach is 49. For the
hybrid approach, this is reduced to 42.

From Table 2 we may conclude that

1. There is no improvement to be gained in using the hybrid scheme for this problem.
All methods give fewer correct solutions.

2. The number of iterations taken to find a correct solution is reduced for the quasi-
Newton methods, but is increased for the Levenberg-Marquardt and conjugate gra-
dient methods. The number of function calls is reduced for all methods except the
Levenberg-Marquardt method, for which it is increased by almost a factor of two.

3. The time taken to find a correct solution for the hybrid approach is between two and
three times that taken for the full nonlinear optimisation.

5.8 Chaotic Time Series.

The time series considered is the quadratic map where the value of the time series at time
t+1, z**1, is given in terms of the value at time t by

! = 42f(1~2Y) (22)

This map is known to be chaotic on the interval [0,1]. The autocorrelation function of this
time series may be shown to be delta distribution correlated |1]. Thus, although the time
series may appear to be intrinsically extremely complicated, it is completely determinis-
tic and has been generated by a smooth, continuous and differentiable map (a quadratic
functional).

-13-
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% Number of | Mean Number of | Mean CPU
Correct | iterations | error £ | function calls | (seconds)

LIN & C.G. (P-R) 88 306 | 0.1506 1204 651
LIN & CG. (F-R) 69 328 | 0.2281 1304 664
LIN & q-N (BFGS) 97 183 | 0.1265 885 435
LIN & q-N (DFP) 94 173 | 0.1307 979 479
LIN & L-M 99 228 | 0.1031 1290 1166
STD & C.G. (F-R} 92 283 | 0.2161 1654 27
STD & C.G. (P-R) 96 272 | 0.1643 1659 217
STD & q-N (BFGS) 100 258 | 0.0919 1163 188
STD & q-N (DFP) 100 187 | 0.1004 1005 153
STD & L-M 100 140 | 0.0667 671 524

C.G = conjugate gradients,
q-N = quasi-Newton, L-M = Levenberg-Marquardt,

Table 2: Results Table illustrating the performance of various search strategies on the
Markov Source Discriminator using a 6-6-1 standard layered network with linear output
units.

The experiment performed is one in which the network attempts to predict the mapping
given by Equation (22). The input training pattern is a data point in the interval (0,1). The
desired target pattern is the number obtained from the mapping given by (22). Training
involved presenting 100 input—output pairs of real numbers, where the input numbers were
distributed according to a uniform random measure on the interval (0,1). For a given
fnitial random configuration of the weights, each search strategy was used to minimise the
output error. Once the network had been trained, it was tested on a different set of 100
random patterns chosen over the same interval and the normalised error calculated. This
was repeated for 100 different random start configurations of the network weights. For this
problem, a solution was determined as ‘correct’ if the normalised error on the test set was
less than 0.01. For the fully nonlinear optimisation scheme, the number of parameters is
19, whilst for the hybrid approach the number of parameters in the nonlinear optimisation
algorithm is 12.

From Table 3 we may infer

1. For this problem, the hybrid approach gives superior performance compared to the
general nonlinear strategy. All hybrid methods obtain 100% correct solutions.

2. The number of iterations and function calls is reduced markedly (by a factor of between
10 and 40).

3. For the hybrid approaches, the mean CPU time per steration is about four seconds,
compared with only one second for the fully nonlinear minimisation. This is due to
the requirement to calculate the pseudo-inverse. However, because of the significant
reduction in the number of iterations, the mean CPU time per solution is also reduced,
though not so dramatically.
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% Number of | Mean Number of | Mean CPU
Correct | iterations | Error, £ | function calls | (seconds)

LIN & C.G. (P-R) 100 4.7 0.0019 29 15
LIN & C.G. (F-R) 100 47| 00021 20 15
LIN & g-N (BFGS) 100 48| 0.0020 31 16
LIN & q-N (DFP) 100 44| 0.0021 30 15
LIN & L-M 100 56| 0.0012 38 23
STD & C.G. (P-R) 59 192 0.1679 1285 202.5
STD & C.G. (F-R) 70 135 | 0.1013 838 133.7
STD & ¢-N (BFGS) 97 143 | 0.0303 788 131.3
STD & q-N (DFP) 95 110 | 0.0044 1720 115.4
STD & L-M 100 58 0.0016 341 109.2
C.G = conjugate gradients,

g-N = quasi-Newton, L-M = Levenberg-Marquardt,

Table 3: Results Table illustrating the performance of various search strategies on the
quadratic map problem for a 1-6-1 standard layered network with linear output units.

5.4 Point-source Location.

The specific problem considered in this subsection is the estimation of the position of a
single source in the far field of an imaging system, given its sampled image vector. A vector
is generated from the outputs of a 4 x 4 array of elements in the focal-plane of an imaging
system (giving an image vector of dimension 16) when the scene contains a single point
source. By moving the source around the scene and measuring its position and the outputs
of the array, a library of image vectors is generated, together with corresponding source
positions. Training a network consists of presenting images of a point source at different
positions in the far field as input with the corresponding azimuth-elevation positions of
the source as targets. The image vectors are normalised and the input data comprises the
normalised images of the source at positions which lie on a 21 x 21 grid covering the field
of view of the array (see [7] for a more complete description of the imaging probiem). The
target data used for training are the positions of the sources which give rise to the image.
Thus, for the training phase, there are 441 patterns of dimension 16 for the inputs and
dimension 2 for the targets. For the test data, the normalised images of a single source at
400 positions which are randomly distributed across the field of view are taken as input with
the positions as targets. Figure 2 shows the calibration source positions for the training
data, the source positions for the test data and the sensor positions.

The network chosen to represent the mapping has 12 logistically nonlinear hidden units
and 2 linear output units, giving 230 independent weights for the fully nonlinear optimisa-
tion strategy and 204 for the hybrid strategy. For the point-source location problem, the
criterion chosen as to whether a ‘correct’ solution was obtained was that the normalised
error on test should be less than 0.015. The experiment was run for 10 different random
start configurations for the network weights. The results are shown in Table 4.

From Table 4 we may conclude
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Figure 2. Diagram showing the calibration target positions for the training data {circles),
the target positions for the test data (stars) and the sensor positions (circled crosses) plotted

in dimensionless units.




-

Hybrid Optimisation for Layered Networks page 17

% Number of | Mean Number of | Mean CPU
Correct | iterations | Error, £ | function calls | (seconds)

LIN & C.G. (P-R) 100 526 0.0052 2019 19712
LIN & C.G. (F-R) 100 967 0.0039 3858 38150
LIN & g-N (BFGS) 100 465 0.0023 2105 19708
LIN & q-N (DFP) 100 219 | 0.0043 1118 10671
LIN & L-M 100 174 0.0017 044 54341
STD & C.G. (P-R) 100 1582 | 0.0058 9030 | 23260
STD & C.G. (F-R) 100 1930 | 0.0051 11076 28414
STD & q-N (BFGS) 100 1908 | 0.0010 1775 26800
STD & q-N (DFP) 100 613 0.0022 3260 9549
STD & L-M 100 110 0.0016 604 37483

S.D = steepest descent, C.G = conjugate gradients,
q-N = quasi-Newton, L-M = Levenberg-Marquardt,

Table 4: Results Table showing the performance of the search strategies on the synthetic
Focal Plane Array problem using a 16-12-2 standard layered network with linear output
units (230 weights to adjust).

1. Both the fully nonlinear optimisation and the hybrid approach achieve 100% correct
solutions.

2. For the conjugate gradients and the quasi-Newton methods, the hybrid approach
reaches a minimum of the error in a fewer number of iterations than the standard
methods. Typically, this reduction is about a factor of three. Surprisingly, the number
of iterations increases for the Levenberg-Marquardt method.

3. The mean errors are reduced for the conjugate gradient methods and are increased
for the quasi-Newton methods. The error for the Levenberg-Marquardt is effectively
unaltered.

4. The mean CPU time per steration is greater for the hybrid approach. However, the
mean CPU time per solution depends on the particular variant of the conjugate gra-
dient or quasi-Newton method. The mean CPU time per solution is greater for the
hybrid approach for one of the conjugate gradient implementations (F-R) and one of
the quasi-Newton methods (DFP) and is reduced for the others.

5. For both the hybrid and standard approaches, the mean CPU time for the Levenberg-
Marquardt method is greatest.

5.5 Speech Recognition: the ‘EE’ set.

This problem is a speaker-dependent speech recognition experiment where the words to
be classified are the highly confusable eight ‘EE’ sounds from the alphabet, ie. {‘B’, ‘C’,
‘D, ‘E’, ‘G, 'P’, ‘T", ‘V'}. A single speaker produced 40 utterances of each of the eight
target sounds which were converted into time-frequency patterns with 40 time slices and 19
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Number of | Training | Testing | Training | Testing | Number of CPU |
run number | iterations | Error, £ | Error, £ | /160 /160 | function calls | (seconds)
1 LIN 45 0.37800 0.5072 140 132 202 3026
2 LIN 71 0.37797 0.4885 140 137 288 4421
3 LIN o1 | 3.2x10°° 0.3382 160 152 355 5435
4 LIN 383 0.0017 0.5121 160 132 1669 24460
5 LIN 123 | 1.0x10°% | 0.3049 160 152 475 7414
1 STD 411 0.3791 0.5205 140 128 1946 25530
2 STD 465 0.3793 0.4756 140 137 1924 26220
38TD 2726 0.0036 0.4226 160 144 12340 164000
4 STD 2180 0.0029 0.3764 160 150 10140 134000
5 STD 484 0.3791 0.5039 144 143 2013 27510

C.G = conjugate gradients, g-N = quasi-Newton, L-M = Levenberg-Marquardt

Table 5: Results Table illustrating the performance of various search strategies on EE set
problem for a 760-8-8 standard layered network with linear output units.

frequency channels as described in [7]. Twenty sets of the eight patterns were used to train
the network and the remaining sets of patterns were used to test the ability of the network
to generalise. The desired target output patterns were taken to be s one-from—eight coding.
Thus the number of input units to the network was 760, the number of hidden units was
taken to be 8 and the number of output units was also 8. In this experiment the total
number of parameters for the fully nonlinear approach is 6160. For the hybrid approach
there are 6088 parameters in the nonlinear part.

In this experiment, a solution was determined as correct if the actual output vector of
the network was closest to the desired target vector. Table 5 gives results for a conjugate
gradient search strategy for five different random starts for the initial weights of the network.

The table shows

1. In all five experiments the number of iterations is greatly reduced by using the hybrid
approach. There is a corresponding reduction in the number of function evaluations.

2. The CPU time for the hybrid approaches is also much lower than the standard, fully
nonlinear strategy.

3. On four of the five examples there is a greater number of correct solutions on test for
the hybrid approach.

4. Two of the five experiments for the hybrid approach produce normalised errors on
train of less than 10~%, showing that the training data was modelled almost exactly.
These two experiments also gave the smallest two normalised errors on the test set
and the greatest number of correct solutions on the test set.
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6 Discussion.

This memorandum has considered a hybrid strategy for solving for the set of unknown
parameters in an adaptive feed—forward layered network such as a multi-layer perceptron.
The strategy has been to solve for the parameters in each layer of the network separately,
which ought to be a method of preventing sensitive errors produced in one layer propagating
to subsequent layers (as the chain rule would indicate). In addition, since the transfer
functions on the output nodes were chosen to be linear, the adjustable parameters between
the fina! layer of hidden units and the output nodes (i.e. the links and biases) may be
determined by a linear optimisation technique.

This strategy may be viewed in two ways : (1) parameters in different layers may
be considered to vary on different time scales, the hidden—output weights are ‘slaved’ to
the behaviour of the input-hidden units; (2) the parameters of the hidden—output layer
are implicit functions of the input-hidden weights. The latter interpretation implies that
the number of adjustable parameters in a network may be reduced, and thus a nonlinear
search strategy may be performed in a reduced-dimension subspace which ought to be more
efficient. At least for linear output transfer functions, solving for the final layer weights in
terms of other parameters guarantees a globally optimum solution in the space spanned by
the final layer weights.

This strategy has been applied to the class of problems considered in our previous
memorandum (7). The nonlinear optimisation of the weights between the input and hidden
layers was performed by one of the several efficient search methods described therein and
the linear optimisation of the final layer weights was performed using a singular value
decomposition to produce a pseudo-inverse of the matrix of outputs of the hidden units.

On the basis of our study, we can infer that in almost all instances the number of
iterations required to reach a solution was significantly reduced. However, the mean CPU
time per steration increased. This is not significant since it is a consequence of evaluating
the pseudo-inverse at every iteration. The pseudo-inverse is not essential : any (iterative)
technique could be employed to solve for the (linear) least—mean-square error at the final
layer which may be faster, though the minimum norm solution to the minimum error would
not be guaranteed.

What is significant, however, is that for some combinations of techniques, the percent-
age of correct solutions was degraded in the hybrid technique compared to solving for all
the network weights simultaneously by the same nonlinear optimisation method. This is
surprising and unexpected. A tentative suggestion for this trend is that for some types of
problem combined with efficient search techniques, restricting the search procedures to op-
erate in a lower dimensional weight space allows a higher percentage of ‘poor’ local minima
to be found. This may be circumvented if the search method was allowed to move in high
dimensions and to flow around the ‘barrier’. However, in other solutions (for example, the
chaotic time series) the hybrid technique is far superior, in terms of the number of iteration
required and the percentage of ‘good’ solutions found. It is interesting to note that in the
largest scale network addressed (the ‘EE’ set) only the hybrid approach succeeded in finding
a sero—error solution on training on the few random weight starts considered. This is pos-
sible in this particular example because the experiment is underdetermined - there are not
sufficient patterns to estimate all the adjustable parameters reliably and so the network is
capable of fitting the training data exactly. Normally this would imply that generalisation
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performance should be poor. However, these zero-error networks also produced the smallest
generalisation errors and maximum classification performance (95% correct on the unseen
data). This observation, combined with the result that the mean normalised error across
all experiments is generally less in the hybrid approach than the fully nonlinear approach,
suggests that solving for the network weights layer by layer tends to produce lower minima,
thus leading to a more efficient optimisation strategy.

The results of this memorandum show that a hybrid approach generally leads to a
minimisation of the error at the output of a network in fewer iteration compared with a fully
nonlinear optimisation strategy. For certain problems (e.g. high—dimensional, confusable,
inherently noisy data illustrated by the ‘EE’ set) the results suggest that it is more efficient
to train a network {according to least-squares minimisation) by using a hybrid technique
which solves for the network parameters layer by layer.
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Appendix A Singular Value Decomposition

Any M x N matrix, A (it is assumed that M > N), can be written in the form [3]
A = UzZV’ (23)

where U'U = V'V = VV* = Iy, the N x N identity matrix, and * denotes the transpose
of a matrix. The matrix £ = diag(o1,03,...,0n) is a diagonal matrix whose elements are
the non-negative square-roots of the eigenvalues of A°A. These are the singular values of
A and may be ordered so that

oy >0 2 ...208 20 (24)

The M x N matrix U consists of the N orthonormalised eigenvectors associated with the
N largest eigenvalues of AA°, and the N x N matrix V consists of the orthonormalised
eigenvectors of A*A. The decomposition given by Equation (23) is termed the singular
value decomposition of the matrix A.

If Aisof rank R < N, then og+) =0r+2 = ... = on = 0 and Equation (23) may be

written
A = UgXpVy (25)
with UpUg = Vi Vg = Ig and X = diag(oy, ... ,0R).

The pseudo-inverse of a M x N matrix A, is the N x M matrix, A*, which satisfies
the four properties: AA*A = A, A*AA* = A% (AA*)" = AA* and (AtA) = A*A.
The pseudo-inverse can always be determined and is unique. It can be computed from the
singular value decomposition of A by

AY = VRpEiUg (26)
where £} = diag(1/0y,1/0,, ... ,1/0g). The pseudo-inverse provides a solution to the
least-squares problem,

Alz) = [b) (27)
Of all the vectors |z) which minimise the sum—of-squares ((b] ~ (z|]A")(|b) — Alx)}), the
minimum norm solution (i.e. the one with the smallest ||z|* = (z|z}) is given by
lz) = A*[b) (28)
-21-
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